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Abstract
This paper presents new geometric aspects of the behaviors of solutions to
the porous medium equation (PME) and its associated equation. First we
discuss thermostatistical structure with information geometry on a manifold of
generalized exponential densities. A dualistic relation between the two existing
formalisms is elucidated. Next by equipping the manifold of q-Gaussian
densities with such a structure, we derive several physically and geometrically
interesting properties of the solutions. The manifold is proved invariant and
attracting for the evolving solutions, which play crucial roles in our analysis.
We demonstrate that the moment-conserving projection of a solution coincides
with a geodesic curve on the manifold. Further, the evolutional velocities of
the second moments and the convergence rate to the manifold are evaluated
in terms of the Bregman divergence. Finally we show that the self-similar
solution is geometrically special in the sense that it is simultaneously geodesic
with respect to the mutually dual two affine connections.

PACS numbers: 89.70.Cf, 05.90.+m, 02.40.Hw

1. Introduction

Let u(x, t) and p(x, τ ) on Rn × R+ be, respectively, the solutions of the following nonlinear
diffusion equation, which is called the porous medium equation (PME):

∂u

∂t
= �um, 1 < m ∈ R, (1)

* Preliminary forms of several results in this paper will appear in [50] without proofs.

1751-8113/10/035002+18$30.00 © 2010 IOP Publishing Ltd Printed in the UK 1

http://dx.doi.org/10.1088/1751-8113/43/3/035002
mailto:ohara@sys.es.osaka-u.ac.jp
mailto:wada@mx.ibaraki.ac.jp
http://stacks.iop.org/JPhysA/43/035002


J. Phys. A: Math. Theor. 43 (2010) 035002 A Ohara and T Wada

with nonnegative initial data 0 � u(x, 0) = u0(x) ∈ L1(Rn), and the associated nonlinear
Fokker–Planck equation (NFPE)

∂p

∂τ
= ∇ · (βxp + D∇pm), 0 < β ∈ R, (2)

with nonnegative initial data 0 � p(x, 0) = p0(x) ∈ L1(Rn). Here, D is a real symmetric
positive definite matrix, which represents the diffusion coefficients. As is widely known
[16, 17] and shown later, one solution is obtained from a simple transformation from the other,
and vice versa.

The PME and NFPE with m > 1 represent the slow diffusion phenomena, which naturally
arise in many physical problems including percolation of fluid through porous media, intensive
thermal waves and so on. Classical results can be found in [1–5] and the references therein.
Hence, the behaviors of their solutions have been studied analytically and thermostatistically
in the literature [6–17], just to name a few. Further, these equations have been found to
have close relations with optimal transport, Wasserstein metric and important inequalities in
several branches of mathematics, such as functional analysis, probability theory or differential
geometry [14–17] and [21–27]. Many research results are summarized in recent monographs
[18–21, 24, 27].

For a real number q, consider the q-Gaussian probability density function [28, 29] defined
by

Gq(x; θ,�) := expq(θ
T x + xT �x − ψ(θ,�)),

θ = (θ i) ∈ Rn, � = (θ ij ) ∈ Rn×n, (3)

where expq t := [1 + (1 − q)t]1/(1−q)
+ ,� is a real symmetric negative definite matrix and

ψ(θ,�) is a normalizing constant. The symbol ·T denotes the transpose of a vector or matrix
and [a]+ for a real a indicates max{0, a}. LetM be the family of q-Gaussian densities specified
by the parameters (θ,�), i.e.

M := {Gq(x; θ,�)|θ ∈ Rn, 0 > � = �T ∈ Rn×n}. (4)

The main purpose of the present paper is to study how solutions of the PME and NFPE
behave relatively to the q-Gaussian family M. There are two major reasons for this novel
viewpoint in the behavioral analysis. First, M is proved to be an invariant manifold which all
the solutions of the PME and NFPE asymptotically approach. This implies thatM analogously
plays a central role in the analysis of the self-similar (Barenblatt–Pattle) solution of the PME
[16] or the asymptotically stable equilibria of the NFPE. Hence, like the classical convergence
analysis of the above two special solutions, we can expect to derive new interesting properties
from this viewpoint. Secondly M admits information geometry [30–33] compatible with
the Legendre structure of generalized thermostatistics [34, 35]. The geometry supplies to us
several concepts such as projections or geodesics, which are useful tools to characterize a
certain geometrical aspect of those solutions. They also give us clear physical interpretations,
like evolutions of moments or the maximization of entropy. Consequently, we derive several
new and interesting geometrical properties and physical information of solutions to the PME
and NFPE. In mathematical statistics several families of multivariate distributions have been
studied via information geometry [38–40] because of their importance in many applications.
Further, Riemmanian geometries of the family of q-Gaussians M are discussed with various
Riemmanian metrics in [41].

In section 2 we introduce and review Naudts’ generalized thermostatistical theory
[34–37] from the standpoint of information geometry, in particular, via recent work by Eguchi
et al [32, 33]. See also [42, 43] for another context. As a by-product the dualistic relation
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between two types of Bregman divergence is obtained, which clearly connects two formalisms
proposed by Naudts and Eguchi et al. Further, we define projections to the generalized
exponential family and notions of geodesics, which are naturally induced from information
geometric structure. Among them the m-projection and m-geodesic, as well as the Bregman
divergence, are our important tools to study the behavior. In section 3 we demonstrate the main
results on behaviors of solutions in terms of introduced geometric concepts on the q-Gaussian
family M. We first prove that M is an invariant manifold for the PME and NFPE. Next,
utilizing the convenient property that the m-projection of a density to M conserves its first and
second moment, we study the behavior of the solutions to the PME and NFPE. Consequently,
evolutions of the second moments and the convergence rate of solutions to the manifold are
characterized by the divergence. Further, the trajectory of the m-projection for a solution is
proved to be an m-geodesic curve on M. Finally, we discuss a special geometric feature of
the self-similar solution.

2. Legendre structure on the generalized exponential family

2.1. Generalized entropy and Bregman divergence

Following [34–37], we introduce generalized entropy and the Bregman divergence on the
space of probability density functions. By bringing results derived from the U-divergence by
Eguchi et al [32, 33] within a scope, we show remarks that clarify the relation between their
formalisms.

For a fixed strictly increasing and positive function φ(s) on (0,∞), define a generalized
logarithmic function as follows:

lnφ(t) :=
∫ t

1

1

φ(s)
ds, t > 0.

Note that lnφ is concave and strictly increasing and satisfies lnφ(1) = 0. A generalized
exponential function denoted by expφ is defined as the inverse function of lnφ , which can be
extended on R by respectively putting 0 or +∞ on the smaller or larger outside of the range
lnφ . The function expφ is confirmed to be strictly increasing and convex. For two probability
density functions p(x) and r(x), we define the Bregman divergence as follows:

Dφ[p‖r] :=
∫

Fφ(p(x)) − Fφ(r(x)) − lnφ r(x)(p(x) − r(x)) dx, (5)

where Fφ(s) is defined for s > 0 by

Fφ(s) :=
∫ s

1
lnφ(t) dt, Fφ(0) := lim

s→0+

Fφ(s) < +∞ :assumed. (6)

Note that Fφ is convex because lnφ is monotone increasing. The divergence, if it exists, is
positive except p(x) = r(x) (a.e.).

Introduce a generalized entropy functional defined by

Iφ[p] :=
∫

−Fφ(p(x)) + (1 − p(x))Fφ(0) dx, (7)

which is positive and concave with respect to p because Fφ is convex and Fφ(1) = 0. We omit
the justification of definition (7) as the generalized entropy (see for [34, 35]) because it needs
arguments for duality of the generalized logarithmic functions.

Here we should make two remarks. First, defining a function on R by

Uφ(t) :=
∫ t

0
expφ u du
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and integrating the right-hand side of (6) by part, we have

Fφ(s) = s lnφ s −
∫ s

1
t
d lnφ t

dt
dt

= s lnφ s −
∫ lnφ s

0
expφ u du

= s lnφ s − Uφ(lnφ s),

or equivalently,

Uφ(t) = t expφ t − Fφ(expφ t). (8)

Thus, Uφ is regarded together with the relation (6), as the Legendre conjugate of Fφ , and
hence, is convex. Then we have the dual expression of the divergence.

Proposition 1. The Bregman divergence (5) is expressed in the dual form by

Dφ[p‖r] =
∫

Uφ(lnφ r(x)) − Uφ(lnφ p(x)) − p(lnφ r(x) − lnφ p(x)) dx. (9)

This form of the divergence is called the U-divergence [32] and have been studied in the fields
of statistics [33] because it is quite convenient in statistical inference from empirical data. In
this paper we mainly use this form to discuss the geometry of generalized exponential family.

Second we see that the divergence is represented, using the entropy functional, by

Dφ[p‖r] = Iφ[r] − Iφ[p] −
∫

(p(x) − r(x)) lnφ r(x) dx

= 
φ[r] − Iφ[p] −
∫

p(x) lnφ r(x) dx.

Here the functional 
φ[p] is defined by


φ[p] :=
∫

p(x) lnφ p(x) dx + Iφ[p]

=
∫

Uφ(lnφ p(x)) + (1 − p(x))Fφ(0) dx.

As is seen below, 
φ vanishes for the standard case φ(u) = u.

Example (q-logarithmic and exponential functions). The results calculated in this example
are used in section 3. Set φ(u) = uq, q > 0, q �= 1; then we have the q-logarithmic and
exponential functions [35, 37]:

lnφ t = lnq t := (t1−q − 1)/(1 − q), expφ t = expq t := [1 + (1 − q)t]1/(1−q)
+ ,

where [x]+ = max{x, 0} for x ∈ R. Note that when q → 1, they recover natural logarithmic
and exponential functions. If 2 − q > 0, we have Fφ(s) and the constant Fφ(0), respectively,

Fφ(s) =
∫ s

1

t1−q − 1

1 − q
dt = 1

1 − q

(
s2−q

2 − q
− s

)
+

1

2 − q
, Fφ(0) = 1

2 − q
.

Consequently it reproduces the corresponding generalized entropy Iφ :

Iφ[p] = 1

2 − q

∫
p(x)2−q − p(x)

q − 1
dx = 1

2 − q
S2−q[p], (10)

where Sq is called the Tsallis entropy [47] defined by

Sq[p] =
∫

p(x)q − p(x)

1 − q
dx.
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Note that S2−q is represented by

S2−q[p] = −
∫

p(x) lnq p(x) dx =
∫

p(x) ln2−q

(
1

p(x)

)
dx.

Consider the case 1 − q > 0, which is used in section 3; then for s � −1/(1 − q) we have

Uφ(s) = 1

2 − q
{1 + (1 − q)s}(2−q)/(1−q) − 1

2 − q
.

Since lnq t � −1/(1 − q) for t � 0, we see that

Uφ(lnφ s) = 1

2 − q
(s2−q − 1), s � 0.

Then the corresponding Bregman divergence of the form (9) is

Dφ[p‖r] =
∫

r(x)2−q − p(x)2−q

2 − q
− p(x)

r(x)1−q − p(x)1−q

1 − q
dx, (11)

which is called the β-divergence and applied to robust estimation in statistics or machine
learning [44–46, 33]. Finally, we have


φ[p] = 1

2 − q

∫
p(x)2−q − p(x) dx.

This functional disappears when q → 1.

2.2. Generalized exponential family and its geometry

Let us consider the following finite-dimensional statistical model called the generalized
exponential family [37, 42] or U-statistical model [32], which is defined by

Mφ := {pθ(x) = expφ(θT h(x) − ψφ(θ))|θ ∈ � ⊂ Rd} ⊂ L1(Rn).

Here h(x) = (hi(x)), i = 1, . . . , d is a certain vector-valued function and ψφ(θ) is a
normalizing factor of pθ , i.e.∫

expφ(θT h(x) − ψφ(θ)) dx = 1. (12)

On the open domain � we assume that the regularity condition holds, i.e. all the formal
calculus necessary below such as convergence of integrations, differentiability of the map
from θ to pθ and so on are valid, so that we can regard Mφ as a differentiable manifold. Since
the parameter θ = (θ i) specifies a density function in Mφ , it plays a role of the coordinate
system for Mφ . Differentiating (12) by θ i (we denote basis tangent vectors by ∂i := ∂/∂θ i),
we have ∫

exp′
φ(θT h(x) − ψφ(θ))(hi(x) − ∂iψφ(θ)) dx = 0, (13)

which will be used later.
One of the simplest ways to define information geometric structure [30, 31] on Mφ , which

is natural with the generalized entropy Iφ , is invoking the following potential function:

�φ(θ) := 
φ[pθ ] + ψφ(θ) =
∫

Uφ(lnφ pθ ) + (1 − pθ(x))Fφ(0) dx + ψφ(θ).

Note that in the standard case φ(u) = u, we have �φ(θ) = ψφ(θ) = log
∫

exp θT h(x) dx

because 
φ vanishes as is seen in the example of the previous section. It follows from the
relation expφ = U ′

φ that

ηi(θ) := ∂i�φ(θ) =
∫

hi(x)pθ (x) dx = Epθ
[hi(x)], (14)

5
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where we denote by Ep[·] the expectation operator for the density p. Using (13) we have

∂i∂j�φ(θ) =
∫

hi(x) exp′
φ(θT h(x) − ψφ(θ))(hj (x) − ∂jψφ(θ)) dx

=
∫

h̃i(x) exp′
φ(θT h(x) − ψφ(θ))h̃j (x) dx, (15)

where h̃i(x) := hi(x) − ∂iψφ(θ). Thus, the Hesse matrix of �φ(θ) is expressed by

(∂i∂j�φ) =
∫

h̃(x)h̃T (x) exp′
φ(θT h(x) − ψφ(θ)) dx,

where h̃(x) = (h̃1(x) · · · h̃n(x))T ,

and we see that it is positive semidefinite because exp′
φ is nonnegative, and hence, �φ is a

convex function of θ . In the following, we assume that (∂i∂j�φ) = (∂ηj/∂θ i) is positive
definite for ∀ θ ∈ �. Hence, η = (ηj ) is locally bijective to θ and we call (ηi) the expectation
coordinate system for Mφ . By relation (14) the Legendre conjugate of �φ(θ) is the sign-
reversed generalized entropy of pθ ∈ Mφ , i.e

�∗
φ(η) := θT η − �φ(θ) =

∫
pθ logφ pθ − Uφ(lnφ pθ ) − (1 − pθ)Fφ(0) dx

= −Iφ[pθ ]. (16)

Hence, �φ can be physically interpreted as the generalized Massieu potential [48, 49],
and hence our Riemmanian metric (∂i∂j�φ) = (∂ηj/∂θ i) defined below is regarded as a
susceptance matrix.

As a Riemannian metric g = (gij ) on Mφ , which is an inner product for tangent vectors,
we use the Hesse matrix of �φ . Note that we can alternatively express (15) as

gij (θ) = g(∂i, ∂j ) := ∂i∂j�φ =
∫

∂ipθ (x)∂j lnφ pθ (x) dx.

For an explicit formula of g in the case of q-Gaussian densities M, see, for example, [41].
Further we define generalized mixture connection ∇(m) and exponential connection ∇(e) by
their components

�
(m)
ij,k(θ) = g

(∇(m)
∂i

∂j , ∂k

)
:=

∫
∂i∂jpθ (x)∂k lnφ pθ (x) dx,

�
(e)
ij,k(θ) = g

(∇(e)
∂i

∂j , ∂k

)
:=

∫
∂kpθ (x)∂i∂j lnφ pθ (x) dx.

(17)

Then the duality relation of the connections [30, 31] ∂igjk = �
(m)
ij,k + �

(e)
ik,j holds. From the

definition we see that the coordinate system (θ i) is special in the sense that �
(e)
ij,k actually

vanishes, i.e.

�
(e)
ij,k(θ) = −

∫
∂kpθ (x)∂i∂jψφ(θ) dx = −∂i∂jψφ(θ)∂k

∫
pθ(x) dx = 0.

Hence, ∇(e) is a flat connection on Mφ and (θ i) is an affine coordinate with respect to ∇(e),
in other words, each ∂i is parallel with respect to ∇(e). Note that we have �

(m)
ij,k = ∂i∂j ∂k�φ .

Similarly, we can show that ∇(m) is also flat on Mφ and (ηj ) is affine with respect to ∇(m) via
formal argument based on the duality [30, 31].

Thus, we have obtained dually flat [30, 31] structure (g,∇(m),∇(e)) on Mφ introduced by
the derivatives of �φ . Note that if φ(u) = u, then Mφ, g,∇(m) and ∇(e) respectively reduce
to the exponential family, the Fisher information matrix, the usual mixture and exponential

6
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connections. We shall find in the following that the structure offers useful tools to us for not
only the statistical inference but also the analysis of the PME or NFPE.

The next result immediately follows from the fact that the coordinates are affine with
respect to the flat connections, and is frequently used in this paper.

Proposition 2. Let C be a one-dimensional submanifold in Mφ . Each coordinate θ i of C
is a linear function of a common scalar variable, i.e. C is expressed as a straight line in the
coordinate system θ = (θ i) if and only if C coincides with a ∇(e)-geodesic (e-geodesic, in
short) curve. Similarly, C is expressed as a straight line in the coordinate system η = (ηi) if
and only if C coincides with a ∇(m)-geodesic (m-geodesic) curve.

In the rest of this subsection we assume that lnφ ◦ expφ(t) = t holds for all t ∈ R. For
densities pθ(x) ∈ Mφ and p(x), we have

Dφ[p‖pθ ] =
∫

Uφ(lnφ pθ (x)) − Uφ(lnφ p(x))

−p(x)[θT h(x) − ψφ(θ) − lnφ p(x)] dx

= �φ(θ) +
∫

Fφ(p(x)) − (1 − p(x))Fφ(0) dx − θT Ep[h(x)]

= �φ(θ) − Iφ[p] − θT Ep[h(x)]. (18)

Further, for pθ1 and pθ2 both in Mφ , the Bregman divergence is represented by

Dφ[pθ1‖pθ2 ] = �φ(θ2) + �∗
φ(η1) − ηT

1 θ2

= �φ(θ2) − �φ(θ1) − ηT
1 (θ2 − θ1), (19)

where η1 and η2 are the expectation coordinates for pθ1 and pθ2 , respectively. Using the above,
we introduce the notion of m-projection, which is geometrically related to the m-geodesic and
orthogonality [30, 31], and prove important properties essential in the behavioral analysis.

Definition 1. Let p(x) be a given density. If there exists a minimizing density p̂θ (x) for the
variational problem minpθ ∈Mφ

Dφ[p‖pθ ], or equivalently, a minimizing parameter θ̂ for the
problem minθ∈� Dφ[p‖pθ ] exists, we call p̂θ (x) = pθ̂ (x) the m-projection of p(x) to Mφ .

Proposition 3. Let p̂θ ∈ Mφ be the m-projection of p. Then the following properties hold.

(i) The m-projection conserves the expectation of h(x), i.e. Ep[h(x)] = Ep̂θ
[h(x)],

(ii) The following triangular equality holds: Dφ[p‖pθ ] = Dφ[p‖p̂θ ] + Dφ[p̂θ‖pθ ] for all
pθ ∈ Mφ .

Proof. Consider the optimality condition for the convex optimization problem
minpθ∈M Dφ[p‖pθ ]. Since the second term of the right-hand side of (18) is constant, we
have

∂�φ

∂θi
(θ) − Ep[hi(x)] = 0, i = 1, . . . , d. (20)

Let θ̂ be the solution for the above optimality condition, i.e. p̂θ = pθ̂ . Then, from (14) and
(20), statement (i) holds.

For statement (ii), we use (18) and (19). Since statement (i) implies that η̂ := Ep̂θ
[h(x)] =

Ep[h(x)], and the identity �φ(θ̂) + �∗
φ(η̂) − θ̂ T η̂ = 0 holds from (16), we can modify the

right-hand side of the triangular equality as

�φ(θ̂) − Iφ[p] − θ̂ T Ep[h(x)] + �φ(θ) + �∗
φ(η̂) − θT η̂ = �φ(θ) − Iφ[p] − θT Ep[h(x)],

(21)

which is equal to Dφ[p‖pθ ]. �
7
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Remark 1. From statement (i) the m-projection p̂θ is characterized as the density in Mφ

with the expectation coordinate equal to Ep[h(x)]. In other words, for any p satisfying
Ep[h(x)] = Ep̂θ

[h(x)] = η̂, we have

Dφ[p‖p̂θ ] = �φ(θ̂) − Iφ[p] − θ̂ T Ep[h(x)]

= �φ(θ̂) − θ̂ T η̂ − Iφ[p] = Iφ[p̂θ ] − Iφ[p] � 0.

Thus, p̂θ achieves the maximum entropy among densities p with the equal expectation of h(x).

3. Several geometric properties of the porous medium and the associated
Fokker–Planck equation

3.1. Preliminaries

In this section, we study the Cauchy problems of PME (1) and NFPE (2) from a viewpoint of
information geometry on the q-Gaussian family M given in (4). In other words, we apply the
general argument in the previous section to the case where φ(u) = uq, q > 0 (cf the example
in section 2) and h(x) is quadratic, i.e. θT h(x) is actually � · (xxT ) + θ · x. Here, · used for
matrices A and B denotes their inner product, i.e. A · B = trace(AT B).

In the following we fix the relation between the exponents of the PME and the parameter
of the q-exponential function by m = 2 − q. Hence, we consider the case 1 < m < 2,
or equivalently, 0 < q < 1. For the brevity, we omit the subscripts φ. Further, for
Gq(x; θ,�) ∈ M and an arbitrary density p(x), we modify the divergence (9) as

D[p(x)‖Gq(x; θ,�)] :=
∫

U(lnq Gq(x; θ,�)) − U(lnq p(x))

− p(x)[θT x + xT �x − ψ(θ,�) − lnq p(x) dx].

The modified divergence also satisfies positivity, convexity in θ and Proposition 3. In NFPE
(2) we can always choose β as an arbitrary constant by a suitable linear scaling of τ and D.
Hence, we set β and introduce another constant α for notational simplicity as follows:

β := 1

n(m − 1) + 2
, α := nβ.

For the q-Gaussian family M, we can regard (θ,�) as the canonical coordinates. On the
other hand, the expectation coordinates are nothing but the first moment vector and second
moment matrix (η,H) defined by

η =
∫

xGq(x; θ,�) dx, H =
∫

xxT Gq(x; θ,�) dx.

Note that the dimension of M is N := n + n(n + 1)/2 = n(n + 3)/2.
We assume that u(x, 0) and p(x, 0), which respectively denote the initial data of the PME

and NFPE, are nonnegative and integrable function with finite second moments. Under these
assumptions, it is proved that there exists a unique nonnegative weak solution if m > 0, and
that the mass M = ∫

u(x, t) dx is conserved for all t > 0 if m � (n − 2)/n. See [16] for
details and additional properties. When we consider the solutions, we restrict their initial
masses to be normalized to one without loss of generalities.

In this subsection we show three fundamental facts, of which the last one might be new.
First of all, we review how the solutions of the PME and NFPE relate each other (cf [16, 17]).
Because of this fact the properties of the solution of PME (1) are important to investigate those
of NFPE (2) and vise versa.

8
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Proposition 4. Let u(x, t) be a solution of PME (1) with initial data u(x, 0) = u0(x) ∈
L1(Rn). Define

p(z, τ ) := (t + 1)αu(x, t), z := (t + 1)−βRx, τ := ln(t + 1);
then p(z, τ ) is a solution of (2) with ∇ = ∇z,D = RRT and initial data p(z, 0) = u0(R

−1z).

Proof. It is known [16] that

p(y, τ ) := (t + 1)αu(x, t), y := x(t + 1)−β, τ := ln(t + 1) (22)

is a solution of the following NFPE:

∂p

∂τ
= ∇y · (βyp + ∇yp

m), (23)

where ∇y = (∂/∂y1 · · · ∂/∂yn)T . Since it holds, for the transformation z = Ry, that

∇z =
(

∂

∂z1
· · · ∂

∂zn

)T

= R−T ∇y,

we see that p(y, τ ) is the solution of (23) if and only if p(R−1z, τ ) is the solution of

∂p(R−1z, τ )

∂τ
= ∇z · (βzp(R−1z, τ ) + D∇zp(R−1z, τ )m).

Note that the drift vector is invariant. Thus, the statement follows. �

Next, the equilibrium density for NFPE (2) is solved using generalized thermostatistical
concept and Lyapunov approach. To analyze the behavior of (2) let us define a generalized
free energy:

F[p] :=
∫

β

2m
xT D−1xp(x) dx − I[p]

= 1

m

∫
β

2
xT D−1xp(x) + p(x) lnq p(x) dx. (24)

This type of functional was first introduced in [8, 9] and developed by many researchers
[13, 16, 17] to discuss convergence of the PME and NFPE. Note that when n = 1, it reduces
to U/D − S2−q up to constant, with the average energy U = Ep[βx2/2] for a drift vector βx.
Hence, the diffusion coefficient D can be interpreted as the temperature in the thermodynamical
argument.

Note that (2) can be rewritten as

∂p(x, τ )

∂τ
= (R∇) · [βR−1xp(x, τ ) + R∇p(x, τ )2−q ]

using a symmetric matrix R satisfying R2 = D. Recalling the relation q = 2 − m, we have

δF
δp

= 1

m

{
β

2
(R−1x) · (R−1x) − mp(x, τ)m−1 − 1

1 − m

}
.

Hence, it holds that

dF[p(x, τ )]

dτ
=

∫
δF
δp

∂p

∂τ
dx =

∫
δF
δp

(R∇) · (βR−1xp + R∇pm) dx

= −
∫ (

(R∇)
δF
δp

)
· (βR−1xp + R∇pm) dx

= − 1

m

∫
p‖βR−1x + mpm−2R∇p‖2 dx � 0. (25)

9
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Thus, F[p(x, τ )] serves as a Lyapunov functional for (2) and the equilibrium density p∞(x)

is determined from (25) as a q-Gaussian:

p∞(x) = Gq(x; 0,�∞) = expq(x
T �∞x − ψ(0,�∞)),

= expq(�∞ · (xxT ) − ψ(0,�∞)), (26)

where the parameters are given by

θ∞ = 0, �∞ = − β

2m
D−1.

From (16) the generalized Massieu potential on the q-Gaussian family M is represented
by

�(θ,�) = θT EGq(θ,�)[x] + � · EGq(θ,�)[xxT ] + I[Gq(θ,�)].

Since the generalized free energy is written as

F[p] = −�∞ · Ep[xxT ] − I[p],

we can express the difference of the free energies at p∞(x) ∈ M and p(x) by the divergence
via (18):

D[p‖p∞] = �(0,�∞) − I[p] − �∞ · Ep[xxT ]

= F[p] − F[p∞].

Thus, the minimization of F[·] is equivalent to that of D[·‖p∞], which can be interpreted as
the H-theorem in statistical physics.

Finally, we show that the q-Gaussian family M is invariant and attracting for the PME
and NFPE, i.e. a solution belongs to M for all future time if its initial density is in M, and
converges to M otherwise. Hence, together with the previous fact on the equilibrium, analysis
with respect to M is expected to add basic knowledge about the behaviors of the solutions.

Proposition 5. The q-Gaussian family M is an invariant and attracting manifold for the
PME and NFPE.

Proof. We prove that �Gq(x; θ,�)m belongs to the tangent space of M at each Gq(x; θ,�).
For the q-Gaussian density Gq(x; θ,�) defined by (3), we see that �Gq(x; θ,�)m is of the
form

�Gq(x; θ,�)m =
{
Q(x; θ,�)Gq(x; θ,�)2−m, x ∈ supp Gq(x; θ,�),

0, x �∈ supp Gq(x; θ,�),

with a certain quadratic function of x, i.e Q(x; θ,�) = xT Ax +bT x +c, where the coefficients
A = (aij ), b = (bi) and c depend on θ = (θ i) and � = (θ ij ). Note that it holds that∫

�Gq(x; θ,�)m dμ = 0 ∀ θ, ∀�

from the mass conservation property of the PME. Hence, A, b and c have a linear constraint
and the scalar coefficient c is determined by A and b. On the other hand, the natural tangent
basis vectors of M are calculated by

∂Gq

∂θi
(x; θ,�) =

⎧⎪⎨
⎪⎩

(
xi +

∂ψ

∂θi

)
Gq(x; θ,�)2−m, x ∈ supp Gq(x; θ,�),

0, x �∈ supp Gq(x; θ,�),

∂Gq

∂θij
(x; θ,�) =

⎧⎪⎨
⎪⎩

(
(2 − δij )xixj +

∂ψ

∂θij

)
Gq(x; θ,�)2−m, x ∈ supp Gq(x; θ,�),

0, x �∈ supp Gq(x; θ,�),

10
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for i, j = 1, . . . , n with i � j . Here, δij is Kronecker’s delta. From the definition of M they
also conserve the mass, i.e.∫

∂Gq

∂θi
(x; θ,�) dx = 0,

∫
∂Gq

∂θij
(x; θ,�) dx = 0 ∀ θ, ∀�.

Consider the following linear combination of these tangent vectors with the coefficients aij

and bi:

v :=
∑
i,j

aij

∂Gq

∂θ ij
(x; θ,�) +

∑
i

bi

∂Gq

∂θ i
(x; θ,�).

Then v is equal to �Gq(x; θ,�)m because both satisfy the mass conservation constraint and
the remaining coefficient c should be consequently represented by

c =
∑
i,j

aij

∂ψ

∂θij
+

∑
i

bi

∂ψ

∂θi
∀ θ, ∀�.

Thus, �Gq(x; θ,�)m belongs to the tangent space of M at Gq(x; θ,�). The attractivity is
straightforward from the well-known fact that all the solutions of the PME asymptotically
converge to the self-similar (Barenblatt–Pattle) solution uBP(x, t) lying on M. (cf
subsection 3.4.) The invariance and attractivity of M for the NFPE follows from this result
and the transformation in proposition 4. �

3.2. Trajectories of m-projections

First we study the behavior of a solution u(x, t) of the PME in terms of its m-projection to
M denoted by û(x, t). Owing to the properties of the divergence described in section 2,
this is equivalent to consider the first and second moments of u(x, t). Let ηPM = (

ηPM
i

)
and

H PM = (
ηPM

ij

)
be, respectively, the first moment vector and the second moment matrix of u;

ηPM
i (t) := Eu[xi], ηPM

ij (t) := Eu[xixj ].

Theorem 1. Consider solutions of the PME with the common initial first and second moments.
Then their m-projections to M evolve monotonically along with the common m-geodesic curve
that starts from the density determined by the initial moments.

Proof. Differentiating ηPM
ij by t, we have

η̇PM
ij =

∫
∂u

∂t
xixj dx =

∫
�umxixj dx = −

∫
∇um · ∇(xixj ) dx

=
∫

um�(xixj ) dx = 2δij

∫
um dx.

Hence, the second moment evolves as follows:

ηPM
ij (t) = ηPM

ij (0) + δijσ
PM
u (t), σ PM

u (t) := 2
∫ t

0
dt ′

∫
u(x, t ′)m dx.

Note that σ PM
u (t) is positive and monotone increasing on t > 0. By similar argument

we see that η̇PM = 0, i.e. the first moment vector is invariant. Thus, the evolution of
(ηPM(t),H PM(t)) for every solution u(x, t) is represented as a straight line. Recalling that the
m-projection conserves these moments from proposition 3, we see that (ηPM(t),H PM(t)) is
just the expectation coordinates of û(x, t). Thus, the trajectory of the m-projection of u(x, t)

is an m-geodesic curve by proposition 2. �

11
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Remark 2. (i) From the argument for the NFPE, we will see that σ PM
u (t) = O(t2β) as

t → ∞. (ii) Theorem implies that the trajectories of m-projections on M for all the PME
solutions u(x, t) are parallelized in the expectation coordinates, i.e.

ηPM(t) = ηPM(0), (27)

H PM(t) = H PM(0) + σ PM
u (t)I, (28)

where I is the n by n identity matrix. In other words, the PME has the following N(=dimM)

constants of motion including the mass M:

J0(=M) :=
∫

u(x, t) dx,

Ji

(=ηPM
i

)
:=

∫
xiu(x, t) dx, i = 1, . . . , n,

Jij

(=ηPM
ij

)
:=

∫
xixju(x, t) dx, i = 1, . . . , n, j = 1, . . . , n, i �= j,

Jkk :=
n∑

i=1

e
(k)
i

(∫
x2

i u(x, t) dx − ηPM
ii (0)

)
≡ 0, k = 1, . . . , n − 1,

where e(k) = (
e
(k)
1 · · · e(k)

n

)
, k = 1, . . . , n − 1 are a set of n − 1 basis vectors of the hyperplane

H = {
x ∈ Rn

∣∣∑n
i=1 xi = 0

}
. Particularly, a solution on the N-dimensional manifold M has

N − 1 constants of motion except the trivial one J0. This implies the possibility that solutions
on M may be explicitly solved by quadratures.

Note that the m-projection û(x, t) of a solution u(x, t) satisfies PME (1) only when
û(x, t) = u(x, t); in other words, u(x, t) is a solution on the invariant manifold M. This
is because the evolutional velocity of each m-projection û(x, t) along a common m-geodesic
curve depends on how far from M the corresponding original solution u(x, t) evolves. This
phenomenon is specific to the slow diffusion, and is quantitatively evaluated in terms of the
expectation coordinates and the divergence as follows.

Let f̂ 0(x) ∈ M be the m-projection of the density f0(x). Consider two solutions u1(x, t)

and u2(x, t) of the PME satisfying u1(x, t0) = f0(x) and u2(x, t0) = f̂ 0(x) at a certain
time t = t0. Note that u2(x, t) ∈ M for all t because M is invariant. From the moment
conservation property of the m-projection stated in proposition 3, the second moment matrices
H PM

i (t) of ui(x, t) for i = 1, 2 satisfy H PM
1 (t0) = H PM

2 (t0). However, their velocities at t0
have the following relation:

Ḣ PM
1 (t0) − Ḣ PM

2 (t0) = 2
∫

f m
0 (x) − f̂ m

0 (x) dxI

= 2m(m − 1)(I[f̂ 0(x)] − I[f0(x)])I

by (28) and the expression of the generalized entropy (10). Using the relation in remark 1, we
have the following.

Corollary 1. Let f̂ 0(x) ∈ M be the m-projection of f0(x) and assume that two solutions
u1(x, t) and u2(x, t) of the PME satisfy the conditions u1(x, t0) = f0(x) and u2(x, t0) = f̂ 0(x)

at a certain time t = t0. Then velocities of their respective second moment matrices at t0 are
related by

Ḣ PM
1 (t0) − Ḣ PM

2 (t0) = 2m(m − 1)D[f0(x)‖f̂ 0(x)]I.

12
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Figure 1. For two solutions u1(x, t) �∈ M and u2(x, t) ∈ M, the m-projection û1(x, t) and
u2(x, t) evolve along a common m-geodesic curve on M with different velocities.

(This figure is in colour only in the electronic version)

Thus, the m-projection û1(x, t) of u1(x, t) �∈ M, which has the common second moment
matrix H PM

1 (t) for all t, evolves faster than u2(x, t) ∈ M, while û1(x, t) and u2(x, t) pass
along a common m-geodesic curve on M by theorem 1. (See figure 1 and [50] for numerical
experiments.) Finally the corollary suggests that by measuring the diagonal elements of
H PM

1 (t) we can estimate how far u1(x, t) is from M in terms of the divergence. Note that the
difference of velocities vanishes when m → 1. Hence, this is the specific property of the slow
diffusions governed by the PME.

Next we study the behavior of the solutions p(x, τ ) of NFPE (2). Recall the transformation
from a solution u(x, t) of the PME to p(x, τ ) given in proposition 4. Since it holds that
dz = (t + 1)−α det(R) dx, we have the relations of the moments:∫

p(z, τ ) dz =
∫

(t + 1)αu(x, t) dz = det(R)

∫
u(x, t) dx (29)

∫
zp(z, τ ) dz = (t + 1)−β det(R)R

∫
xu(x, t) dx (30)

∫
zzT p(z, τ ) dz = (t + 1)−2β det(R)R

(∫
xxT u(x, t) dx

)
RT . (31)

The first relation shows that the solution of the NFPE also conserves its mass. Let ηFP(τ ) and
H FP(τ ) be, respectively, the first and second moments of p(x, τ ), i.e.

ηFP = (
ηFP

i

)
, H FP = (

ηFP
ij

)
,

where

ηFP
i := Ep[xi], ηFP

ij := Ep[xixj ].

From the behavior of the moments of the PME and the above relations, we have

ηFP(τ ) = (t + 1)−β det(R)RηPM(t) = e−βτ det(R)RηPM(0)

= e−βτ ηFP(0),

H FP(τ ) = (t + 1)−2β det(R)RH PM(t)RT

= e−2βτ det(R)[RH PM(0)RT + σ PM
u (eτ − 1)D]

= e−2βτH FP(0) + e−2βτ σ FP
p (eτ − 1)D,

13
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where the scaling τ = ln(t + 1) is assumed and σ FP
p (t) is defined by

σ FP
p (t) := det(R)σ PM

u (t)

= 2
∫ ln(1+t)

0
dτ ′ eτ ′+α(1−m)τ ′

∫
p(x, τ ′)m dx

for a solution u of the PME and the corresponding solution p of the NFPE. Note that
differentiating the above by t, we have

(1 + t)α(1−m)

∫
p(x, τ )m dx = det(R)

∫
u(x, t)m dx. (32)

For the limiting case m → 1 (and accordingly β → 1/2), we see that the above
expressions recover the well-known linear Fokker–Plank case with a drift vector x/2:

ηFP(τ ) = e−τ/2ηFP(0), H FP(τ ) = e−τH FP(0) + 2(1 − e−τ )D.

Since we know that p(x, τ ) converges to p∞(x) ∈ M in (26) and it holds that

lim
τ→∞ H FP(τ ) =

√
det D

(
lim
t→∞(t + 1)−2βσ PM

u (t)
)
D (33)

because det R = √
det D, we conclude that the left-hand side of (33) exists and σ PM

u (t) =
O(t2β) as t → ∞ (cf remark 2). Summing up the above with proposition 2, we obtain the
following geometric property of the NFPE.

Corollary 2. Consider the solutions of the NFPE with the common initial first and second
moments. Then their m-projections to M evolve along with the common m-geodesic curve
from the density determined by the initial moments to the equilibrium p∞(x).

Note that the following relation holds with the scaling τ = ln(t + 1):

d

dτ
H FP(τ ) = (t + 1)−2β

(
−2βH FP(0) − 2βσ PM

u (t)D + (t + 1)
dσ PM

u (t)

dt
D

)
. (34)

Hence, we cannot guarantee the monotonic behavior of the second moment matrix H FP(τ )

unlike the linear Fokker–Planck equation. For example, if the initial density p(x, 0) is not on
M but has the common second moments with the equilibrium density, we cannot expect that
the right-hand side of (34) is zero and the second moment matrix possibly oscillates around
its equilibrium.

3.3. Convergence rate of the solution of the PME to M

Finally, we show that the triangle equality of the divergence is useful to estimate the
convergence rate of the solution of the PME to M. It is known [14, 15, 17] that a solution of
the NFPE decays exponentially with respect to the divergence, i.e.

D[p(x, τ )‖p∞(x)] = F[p(x, τ )] − F[p∞(x)] � (D[p(x, 0)‖p∞(x)]) e−2βτ . (35)

Proposition 6. Let u(x, t) be a solution of the PME and û(x, t) be the m-projection of u(x, t)

to the q-Gaussian family M at each t. Then u(x, t) asymptotically approaches M satisfying

D[u(x, t)‖û(x, t)] � C0

1 + t
,

where C0 is a constant depending on the initial function u(x, 0).

Proof. Owing to the triangular equality of the m-projection in proposition 3, it holds that

D[p(x, τ )‖p̂(x, τ )] + D[p̂(x, τ )‖p∞(x)] = D[p(x, τ )‖p∞(x)].

14
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Together with (35), we have

D[p(x, τ )‖p̂(x, τ )] � D[p(x, 0)‖p∞(x)] e−2βτ .

Let u(x, t) and û(x, t) be functions defined from p(x, τ ) and p̂(x, τ ), respectively,
through the transformation in proposition 4. Then, it is easy to see that û(x, t) ∈ M if and
only if p̂(x, τ ) ∈ M at each fixed t (and τ ). Further, since the first and second moments of
p(x, τ ) and p̂(x, τ ) are equal, so are those of u(x, t) and û(x, t) from (30) and (31). Thus,
we conclude that û(x, t) is also the m-projection of u(x, t). It holds from (32) that

det(R)

∫
û(x, t)m − u(x, t)m dx = (1 + t)α(1−m)

∫
p̂(x, τ )m − p(x, τ )m dx.

Hence, the relation in remark 1 shows that

D[u(x, t)‖û(x, t)] = (1 + t)α(1−m)D[p(x, τ )‖p̂(x, τ )]/det(R)

� (1 + t)α(1−m)−2βC0 = (1 + t)−1C0

because α(1 − m) − 2β = −1. �

Remark 3. From the above result we can conclude that the L1 convergence of u(x, t) to
M is with the rate 1/

√
1 + t , using the Csiszar–Kullback inequality [14]. This implies that

the convergence to M is faster than that to the self-similar solution of the PME (cf the next
subsection), the rate of which is known to be 1/tβ when 1 < m � 2 [16, 17]. This might be a
new aspect of the convergence properties for solutions of the PME.

3.4. The trajectory of self-similar solution

For PME (1) there exists a special solution on M called the self-similar solution or Barenblatt–
Pattle solution [51, 52]. The solution is expressed in terms of the q-Gaussian density for the
case of unit mass by

uBP(x, t) := t−α

(
C − (m − 1)β

2m
t−2βxT x

)1/(m−1)

= t−α expq(t
−2βxT �(1)x − ψ(0,�(1)))

= expq(x
T �(t)x − ψ(0,�(t)))

= Gq(x; 0,�(t)), �(t) = −t−1 β

2m
I, (36)

where C is a constant for uBP(x, t) to have unit mass and the normalizing constant satisfies

ψ(0,�(t)) = 1 − Ctα(1−m)

m − 1
.

The self-similar solution plays an important role in analysis of the PME [16]. It is known
that any solution for the PME with unit initial mass converges to uBP(x, t), e.g. in L1 norm
limt→∞ ‖u(x, t) − uBP(x, t)‖1 = 0 [16, 17]. Geometrically, it is also special in the following
sense.

Lemma 1. The trajectory of the self-similar solution uBP(x, t) is a curve on M that is
simultaneously an m- and e-geodesic.

Proof. In theorem 1 we have already proved that the trajectory is an m-geodesic. Since (36)
shows that the trajectory is expressed as a straight line in the canonical coordinate system
(θ,�), the statement follows from proposition 2. �
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Remark 4. The property of the self-similar solution stated in the above lemma is called doubly
autoparallel [53]. From this we can readily conclude that the trajectory of the self-similar
solution is also a geodesic with respect to the Levi–Civita connection.

As an application of this property, we have the following decomposition of the divergence.

Proposition 7. Let u(x, t) be a solution of the PME and û(x, t) be its m-projection to M.
For the trajectory of the self-similar solution uBP(x, t) with 0 < t denoted by γ , define the
m-projection of û(x, t) to γ by

u∗(x, t) := arg min
r(x)∈γ

D[û(x, t)‖r(x)].

Then it holds for all t > 0 that

D[u(x, t)‖uBP(x, t)] = D[u(x, t)‖û(x, t)] + D[û(x, t)‖u∗(x, t)] + D[u∗(x, t)‖uBP(x, t)].

Proof. From proposition 3, we have

D[u(x, t)‖uBP(x, t)] = D[u(x, t)‖û(x, t)] + D[û(x, t)‖uBP(x, t)].

The decomposition

D[û(x, t)‖uBP(x, t)] = D[û(x, t)‖uBP(x, t)] + D[u∗(x, t)‖uBP(x, t)]

follows from the standard argument of the Pythagorean relation in information geometry
[30, 31]. �

4. Conclusions

We have studied the behavior of the solutions to the PME and NFPE focusing on the
q-Gaussian family M. By proving that M is a stable invariant manifold of both equations,
we have obtained several properties of the solutions, e.g. N(=dimM) constants of motions,
the convergence rate to M and geometrical characterization of the self-similar solution of the
PME. In particular, the dependence of the evolutional velocity on the divergence from M
(corollary 1) would be a peculiar phenomenon to the slow diffusion.

Through the analysis, we see that the generalized concepts of statistical physics and
the compatibly defined information geometric structure on M provide us with abundant and
precise information on the behavior of solutions.

In [15], Otto reported that the PME can be regarded as a gradient system via Riemannian
geometry with the Wasserstein metric. The relation with the framework in the present paper
is left unclear. Another important future work would be to confirm how the obtained results
are analogously extended to the other parameter ranges: 2 � m or m < 1 (fast diffusion), or
the other type of nonlinear diffusion equation.
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